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Equations of Motion
 Lorentz Force

 Magnetic Rigidity
• (particle w/ unit charge, e)

 Need for Transverse Focusing
 Uniform bending field stable horizontally, unstable 

vertically; not all particles (any?) begin “on” the design
 Reference Trajectory and Local Coordinate 
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Weak Focusing System
   (as it has come to be known…)

 Field varies with radius:
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Weak Focusing System
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Weak Focusing:  
Differential Equations

Radial:                Vertical:














 Betatron Tune
 # osc.’s per turn:



  

Maximum Excursions
 Solution is Simple harmonic Oscillator:

 For given angular deflection, Maximum Excursion:   
 Note: 0 < tune < 1, 
 Thus, due to limited range of n, then as R (i.e., energy) got large, so 

did the required apertures
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Guide Fields 
and Linear Focusing Fields
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Linear Restoring Forces
 Assume linear guide fields: --


 Look at radial motion:

By = B0 + B’x

Bx = B’y
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Hill’s Equation
 Then, for vertical motion:

 So we have, 
  to lowest order,

General Form:
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Magnetic Elements
By = B’x

Bx = B’y

(Quadrupole Magnet)

By = B0
Bx = 0

(Dipole Magnet)
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Gradient Magnets
By = B0 + B’x

Bx = B’y

“Alternating
       Gradient”
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Superconducting Magnets
 Here, field is not shaped by iron pole tips, 

but rather is shaped by placement of the 
conductor

 Example:  dipole magnet…
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Superconducting Magnets
 Example:

 J ~ 1000 A/mm2,  d ~ 1 cm
         ==>  B ~ (2π 10-7)(1000*106)(10-2) = 2π Tesla

 Tevatron -- ~4.4 Tesla
 SSC (above parameters) -- 6.6 Tesla
 LHC -- 8 Tesla
 LBNL model magnet -- 16 Tesla

Note:  Higher fields a “plus,” but field quality typically 
easier to control with iron pole tips shaping the field …



  

Tevatron Dipole Magnet



  

Sector Magnets
 Sector Dipole Magnet:  “edge” of 

magnetic field is perpendicular to 
incoming/outgoing design trajectory:

Field points “out of the page”



  

Sector Magnets & Sector Focusing
 Incoming ray displaced from ideal trajectory will 

experience more/less bending field, thus is 
“focused” toward axis in the bend plane:

x

x

   (as seen previously, with B’ = 0)

For short magnet with small 
bend angle, acts like lens in 
the bend plane with

Extra path length = ds = dθ x
so extra bend angle = dx′ = −ds/ρ
dx′ = −(dθ/ρ)x = −(1/ρ2)x ds
or, x′′ = −(1/ρ2)x

Thus, Kx = 1/ρ2, Ky = 0.



  

Edge Focusing
 In an ideal sector magnet, the magnetic 

field begins/ends exactly at s = 0,L  
independent of transverse coordinates x,y 
relative to the design trajectory.
 i.e., the face of the magnet is perpendicular 

to the design trajectory at entrance/exit



  

Edge Focusing
 However, could (and often do) have the 

faces at angles w.r.t. the design trajectory 
-- provides “edge focusing”







 Since our transverse coordinate x is everywhere 
perpendicular to s, then a particle entering with an offset 
will see more/less bending at the interface...

s



  

So, How to Model Edges?
 In many cases, can consider edge effects 

to be perturbations to main motion, and 
treat as “impulse” kicks -- a “hard edge 
model”    (can do better modeling, if required...)

From Above: From Side, “on edge”:

B0

By

Bh
h

y

x = −h sin e h

s

x
e



  

Edge Focusing -- radial

 Radial Defocusing:

 So, for positive x, design trajectory “curves away” before particle reaches 
edge of magnetic field; thus, “defocusing” effect

 Similarly, upon exit
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Edge Focusing -- axial
 Vertical (axial) Focusing:
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Total Bend Magnet:
Sector + Edges

 Treat arbitrary edge angles as separate 
“lenses” at each end of a sector magnet…

e1
   (<0)  e2

   (>0)

 at each edge:

inside, Kx = 1/ρ2,

Ky = 0 Mmag = Me2
MsectMe1



  

Rectangular Bending Magnet
 “Rectangular” Dipole Magnet:

In bending plane, each 
edge acts as a lens with 
focal length:

For Rectangular Magnet, 
then
 hor:

 ver:

For Sector Magnet,
then
     hor:

     ver:
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Back to Transverse Motion…
Piecewise Method of Solution

 Hill’s Equation
 Though K(s) changes along the design trajectory, it 

is typically constant, in a piecewise fashion, through 
individual elements (drift, sector mag, quad, edge, ...)

 K = 0: 

 K > 0:

 K < 0:

Here, x refers to horizontal or vertical motion, with relevant value of K

drift

Quad,

Gradient

 Magnet,

   edge,

       .
..



  

Piecewise Method -- Matrix Formalism

 Write solution to each piece in matrix form
 for each, assume K = const. from s=0 to s=L

 K = 0:

 K > 0:

 K < 0:



  

“Thin Lens” Quadrupole
 If quadrupole magnet is short enough, particle’s offset 

through the quad does not change by much, but the 
slope of the trajectory does -- acts like a “thin lens” in 
geometrical optics

 Take limit as L --> 0, while KL remains finite

 (similarly, for defocusing quadrupole)

 Valid approx., if F >> L x(s)

sF



  

Piecewise Method -- Matrix Formalism

 Arbitrary trajectory, relative to the design 
trajectory, can be computed via matrix 
multiplication

s0
sN

x



  

Stability Criterion
 For single pass through a system of elements, 

above may be enough to describe the system.  
Suppose the “system” is a synchrotron -- how to 
show that the motion is stable for many 
(infinite?) revolutions?   (24hrs x 50K rev/sec = …)

 Look at matrix describing motion for one 
revolution:

 We want:



  

Stability Criterion

If  is imaginary, then repeated application of M gives 
exponential growth; if    real, gives oscillatory solutions…

V = eigenvector
  = eigenvalueλ

µ

µ



  

Discovery of Strong Focusing*
 Consider weak focusing system discussed earlier, made up of 2N 

identical gradient magnets.  Take every other magnet, turn it 
around so that the wedge opens inward, and reverse its current.  

 Then all magnets have same bend field (in same direction) on the 
ideal trajectory, but every other magnet has its gradient (K) with 
reversed sign.  We now have N “cells” of +K and -K.

 In one degree-of-freedom (vertical, say), each cell has matrix:

Here,*Courant, Livingston, and
Snyder, 1952 K = |B′|/Bρ



  

The Strong vs. The Weak…
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So, could choose KL2 ≈ [(0.2)2π]2 = 1.58, say.
→ KL2 = (B′/Bρ)L2 = (B′ρ/B)(L/ρ)2 = |n| θ2

0 = |n| (2π/2N)2 = 1.58
for example, say N ∼ 25; then |n| ∼ 100 $ 1 (STRONG focusing!)

(Note: for Weak Foc. accel., typically n ∼ 2/3 −→ KL2 ∼ 0.01!)



  

Alternating Gradients
 So, now that we can accommodate very strong field gradients, and 

alternate them over short distances, the extent of radial and vertical 
excursions becomes decoupled from the orbital radius of the 
accelerator.





 The announcement of the AG concept came in 1952, and was 
immediately applied at Cornell in a 1 GeV electron synchrotron being 
constructed (Wilson, et al.), the world’s highest energy at the time.  This 
eventually led to the design and construction of the PS at CERN (1958) 
and the AGS at Brookhaven National Lab (1960), increasing particle 
energies to the 30 GeV range.  Strong Focusing has been at the heart 
of every forefront accelerator ever since.



  

Application to FODO system

M

and repeat…



  

Can now make LARGE accelerators!
 Since the lens spacing can be made arbitrarily short, 

with corresponding focusing fields, then in principal can 
make a synchrotron of arbitrary size









 Can “separate” the bending and focusing “functions”
 First synchrotron to use alternating gradient “thin 

lenses” + dipole magnets:
 Fermilab Main Ring



  

The Notion of an Amplitude Function…
 Track a single particle 

through a system of 
FODO cells

 Repeat, representing 
multiple passages 
around a synchrotron

Can we describe the maximum amplitude of
  particle excursions in analytical form?

   of course!


